Gujarati
Hindi
12.Kinetic Theory of Gases
normal

A gaseous mixture consists of $16\, g$ of helium and $16\, g$ of oxygen. The ratio $(C_p/ C_v)$ of the mixture is

A

$1.4$

B

$1.54$

C

$1.59$

D

$1.62$

Solution

For mixture of gases

$C_{\mathrm{v}}=\frac{\mathrm{n}_{1} \mathrm{C}_{\mathrm{v}_{2}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}_{2}}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$

where, $C_{v}=\frac{f}{2} R, f$ is degree of freedom

and $C_{p}=\frac{n_{1} C_{p_{1}}+n_{2} C_{p_{2}}}{n_{1}+n_{2}}$

where, $C_{p}=\left(1+\frac{f}{2}\right) R$

For helium : $n_{1}=4, f=3$

For oxygen $: \mathrm{n}_{2}=\frac{1}{2}, \mathrm{f}=5$

$\frac{\mathrm{C}_{\mathrm{g}}}{\mathrm{C}_{\mathrm{v}}}=\frac{4 \times \frac{5 \mathrm{R}}{2}+\frac{1}{2} \times \frac{7 \mathrm{R}}{2}}{4 \times \frac{3 \mathrm{R}}{2}+\frac{1}{2} \times \frac{5 \mathrm{R}}{2}}=\frac{47}{29}=1.62$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.