12.Kinetic Theory of Gases
normal

The amount of heat energy required to raise the temperature of $1\, g$ of Helium at $NTP,$ from $T_1\, K$ to $T_2\, K$ is

A

$\frac{3}{2} N_Ak_B(T_2-T_1)$

B

$\frac{3}{4}N_Ak_B(T_2-T_1)$

C

$\;\frac{3}{4}N_Ak_B(\frac{{T_2}}{{{\rm{T}}_1}}$)

D

$\;\frac{3}{8}N_Ak_B(T_2-T_1)$

Solution

અહીં $NTP$ એ આપેલ વાયુનું તાપમાન  $T_1K$  થી $T_2K$ થાય છે, તેનો અર્થ અચળ કદે ($P \propto  T $ કહેવાય) વાયુનું તાપમાન $T_1K$ થી $T_2K$ થાય છે તેમ કહેવાય. તેના માટે જરૂરી ઉષ્મા-ઊર્જાનો જથ્થો  $(\Delta Q)_V = \mu C_V \Delta T$ અહીં $\mu  = \frac{{\text{M}}}{{{{\text{M}}_{\text{0}}}}} = \frac{1}{4}\,\,\,\,\,\,{C_V} = \frac{{{f}\,R}}{2} = \frac{{3R}}{2}\,\,\,\,(\because \,\,{f} = 3)$ $\therefore \,{(\Delta Q)_V} = \frac{1}{4} \times \frac{{3\,R}}{2}({T_2} – {T_1}) = \frac{3}{8}({N_A}{k_B})({T_2} – {T_1})$ ($ R = N_Ak_B$)

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.