4-1.Newton's Laws of Motion
medium

A gun applies a force $F$ on a bullet which is given by $F =\left(100-0.5 \times 10^{5} t \right) N$. The bullet emerges out with speed $400 \,m / s$. Then find out the impulse exerted till force on bullet becomes zero. (in $N - s$)

A

$0.2$

B

$0.3$

C

$0.1$

D

$0.4$

(AIIMS-2019)

Solution

Consider the given expression.

$F =\left(100-0.5 \times 10^{5} t \right) N$

Given that, $F =0$

$\left(100-0.5 \times 10^{5} t \right)=0$

$t =\frac{100}{0.5 \times 10^{5}}$

$=2 \times 10^{-3} sec$

Calculate the impulse as,

$I =\int Fdt$

$=\int\left(100-0.5 \times 10^{5} t \right) dt$

$=\left[100 t -\frac{10^{5}}{2} \frac{ t ^{2}}{2}\right]$

$=\left[100\left(2 \times 10^{-3}\right)-\frac{10^{5}}{2} \frac{\left(2 \times 10^{-3}\right)^{2}}{2}\right]$

$=0.1 Ns$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.