4-1.Newton's Laws of Motion
medium

A rigid ball of mass $m$ strikes a rigid wall at $60^o $ and gets reflected without loss of speed as shown in the figure. The value of impulse imparted by the wall on the ball will be

A

$\frac{{mv}}{2}$

B

$\;\frac{{mv}}{3}$

C

$mv$

D

$2mv$

(NEET-2016)

Solution

$\begin{array}{l}
\,\,\,\,\,\,\,\,Given,\,{P_i} = {P_f} = mV\\
chenge\,in\,momentum\,of\,the\,ball\\
 = \,{{\bar P}_f} – {{\bar P}_i}\\
 = \left( { – {P_{fx}}\hat i – {P_{fy}}\hat j} \right) – \left( {{P_{ix}}\hat i – {P_{iy}}\hat j} \right)\\
 =  – \hat i\left( {{P_{fx}} + {p_{ix}}} \right) – \hat j\left( {{p_{fy}} – {p_{iy}}} \right)\\
 =  – 2{P_{ix}}\hat i =  – mV\hat i\,\,\,\left[ {{P_{fy}} – {P_{iy}} = 0} \right]
\end{array}$

$\begin{array}{l}
Here,\,{P_{ix}} = {P_{fx}} = {P_i}\cos {60^ \circ } = \frac{{mV}}{2}\\
{\rm{Impulse}}\,{\rm{imparted}}\,{\rm{by}}\,{\rm{the}}\,{\rm{wall}}\,\\
 = change\,in\,the\,momentum\,of\\
the\,ball\, = \,mV.
\end{array}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.