- Home
- Standard 11
- Physics
A heated body emits radiation which has maximum intensity at frequency $f_m$. If the temperature of the body is doubled
The maximum intesity radiation will be at frequency $2f_m$
The maximum intesity radiation will be at frequency $\frac{1}{2}\,{f_m}$
The total emitted energy will increase to $2\, times$
The total emitted energy will increase to $8\, times$.
Solution
$\lambda_{\max }=\frac{b}{T} \Rightarrow \lambda_{\max }=\frac{c}{f_{\max }}=\frac{b}{T} \quad\left\{\because \lambda=\frac{c}{f}\right\}$
$\frac{\mathrm{cT}}{\mathrm{b}}=\mathrm{f}_{\mathrm{max}} \Rightarrow \mathrm{f}_{\mathrm{max}} \propto \mathrm{T} \quad$ so
on doubling temperature $\mathrm{f}_{\mathrm{max}}$ doubles Emitted
$\mathrm{Q}=\mathrm{e}_{\mathrm{x}} \sigma \mathrm{AT}^{4} \mathrm{t} \quad \Rightarrow \quad \mathrm{Q} \propto \mathrm{T}^{4}$
So $Q$ becomes $16$ times