Gujarati
Hindi
10-2.Transmission of Heat
normal

A heated body emits radiation which has maximum intensity at frequency $f_m$. If the temperature of the body is doubled

A

The maximum intesity radiation will be at frequency $2f_m$

B

The maximum intesity radiation will be at frequency $\frac{1}{2}\,{f_m}$

C

The total emitted energy will increase to $2\, times$

D

The total emitted energy will increase to $8\, times$.

Solution

$\lambda_{\max }=\frac{b}{T} \Rightarrow \lambda_{\max }=\frac{c}{f_{\max }}=\frac{b}{T} \quad\left\{\because \lambda=\frac{c}{f}\right\}$

$\frac{\mathrm{cT}}{\mathrm{b}}=\mathrm{f}_{\mathrm{max}} \Rightarrow \mathrm{f}_{\mathrm{max}} \propto \mathrm{T} \quad$ so

on doubling temperature $\mathrm{f}_{\mathrm{max}}$ doubles Emitted

$\mathrm{Q}=\mathrm{e}_{\mathrm{x}} \sigma \mathrm{AT}^{4} \mathrm{t} \quad \Rightarrow \quad \mathrm{Q} \propto \mathrm{T}^{4}$

So $Q$ becomes $16$ times

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.