Gujarati
Hindi
13.Oscillations
medium

A heavy small-sized sphere is suspended by a string of length $l$. The sphere rotates uniformly in a horizontal circle with the string making an angle $\theta $ with the vertical. Then the time period of this conical pendulum is

A

$t = 2\pi \sqrt {\frac{l}{g}} $

B

$t = 2\pi \sqrt {\frac{{l\,\sin \,\theta }}{g}} $

C

$t = 2\pi \sqrt {\frac{{l\,\cos \,\theta }}{g}} $

D

$t = 2\pi \sqrt {\frac{l}{{g\,\cos \,\theta }}} $

Solution

Radius of circular path in the horizontal plane

$\mathrm{r}=l \sin \theta$

Forces acting on the bob are.

$(i)$ $\mathrm{T}=$ tension in the string

$(ii)$ $\mathrm{Mg}=$ weight of the bob

Resolving $T$ along the vertical and horizontal

direction, we get

${\mathrm{T} \cos \theta=\mathrm{Mg}}$         $…(1)$

${\mathrm{T} \sin \theta=\mathrm{Mr} \omega^{2}=\mathrm{M}(l \sin \theta) \omega^{2}}$   

or         ${\mathrm{T}=\mathrm{M} l \omega^{2}}$   $…(2)$

Dividing eq. $(2)$ by eq. $(1)$, we get

$\frac{1}{\cos \theta}=\frac{l \omega^{2}}{g}$

$\mathbf{o r}$          $\omega^{2}=\frac{g}{l \cos \theta}$

$\text { time period } \quad \mathrm{t}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l \cos \theta}{\mathrm{g}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.