A hollow metal sphere of radius $5\, cm$ is charged so that the potential on its surface is $10\, V$. The potential at the centre of the sphere is
$0\, V$
$10\, V$
Same as at point $5\, cm$ away from the surface
Same as at point $25\, cm$ away from the surface
Consider a sphere of radius $R$ having charge $q$ uniformly distributed inside it. At what minimum distance from its surface the electric potential is half of the electric potential at its centre?
The election field in a region is given by $\vec E = (Ax + B)\hat i$ where $E$ is in $N\,C^{-1}$ and $x$ in meters. The values of constants are $A = 20\, SI\, unit$ and $B = 10\, SI\, unit$. If the potential at $x =1$ is $V_1$ and that at $x = -5$ is $V_2$ then $V_1 -V_2$ is.....$V$
A small conducting sphere of radius $r$ is lying concentrically inside a bigger hollow conducting sphere of radius $R.$ The bigger and smaller spheres are charged with $Q$ and $q (Q > q)$ and are insulated from each other. The potential difference between the spheres will be
Four point charges $-Q, -q, 2q$ and $2Q$ are placed, one at each comer of the square. The relation between $Q$ and $q$ for which the potential at the centre of the square is zero is
Consider two conducting spheres of radii ${{\rm{R}}_1}$ and ${{\rm{R}}_2}$ with $\left( {{{\rm{R}}_1} > {{\rm{R}}_2}} \right)$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whether the charge density of the smaller sphere is more or less than that of the larger one.