A horizontal force of $10 \,N$ is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is $0.2$. the weight of the block is ........ $N$
$2 $
$20 $
$50$
$100 $
A block pressed against the vertical wall is in equilibrium. The minimum coefficient of friction is:-
In figure, the coefficient of friction between the floor and the block $B$ is $0.2$ and between blocks $A$ and $B$ is $0.3$. ........ $N$ is the maximum horizontal force $F$ can be applied to the block $B$ so that both blocks move together .
A rectangular box lies on a rough inclined surface. The coefficient of friction between the surface and the box is $\mu $. Let the mass of the box be $m$.
$(a)$ At what angle of inclination $\theta $ of the plane to the horizontal will the box just start to slide down the plane ?
$(b)$ What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $\alpha > \theta $ ?
$(c)$ What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed ?
$d)$ What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration $a$ ?
For the given figure, if block remains in equilibrium position then find frictional force between block and wall ........ $N$
A body of mass $\mathrm{m}$ is kept on a rough horizontal surface (coefficient of friction $=\mu$ ) A horizontal force is applied on the body, but it does not move. The resultant of normal reaction and the frictional force acting on the object is given by $\mathrm{F},$ where $\mathrm{F}$ is