A light wave is incident normally on a glass slab of refractive index $1.5$. If $4\%$ of light gets reflected and the amplitude of the electric field of the incident light is $30\, V/m$, then the amplitude of the electric field for the wave propagating in the glass medium will be.......$ V/m$
$30$
$10$
$24$
$6$
Write characteristics of electromagnetic waves.
The magnetic field in a plane electromagnetic wave is given by, $B=3.01 \times 10^{-7} \sin \left(6.28 \times 10^2 \times+2.2 \times 10^{10} t\right) \,T$. [where $x$ in $cm$ and $t$ in second]. The wavelength of the given wave is ....... $cm$
A plane electromagnetic wave in a non-magnetic dielectric medium is given by $\vec E\, = \,{\vec E_0}\,(4 \times {10^{ - 7}}\,x - 50t)$ with distance being in meter and time in seconds. The dielectric constant of the medium is
A plane electromagnetic wave of frequency $25\; \mathrm{GHz}$ is propagating in vacuum along the $z-$direction. At a particular point in space and time, the magnetic field is given by $\overrightarrow{\mathrm{B}}=5 \times 10^{-8} \hat{\mathrm{j}}\; \mathrm{T}$. The corresponding electric field $\overrightarrow{\mathrm{E}}$ is (speed of light $\mathrm{c}=3 \times 10^{8}\; \mathrm{ms}^{-1})$
Light wave traveling in air along $x$-direction is given by $E _{ y }=540 \sin \pi \times 10^{4}( x - ct ) Vm ^{-1}$. Then, the peak value of magnetic field of wave will be $\dots \times 10^{-7}\,T$ (Given $c =3 \times 10^{8}\,ms ^{-1}$ )