A long metallic bar is carrying heat from one of its ends to the other end under steady-state. The variation of temperature $\theta$ along the length $x$ of the bar from its hot end is best described by which of the following figures?
On which factor does the thermal conductivity depend ?
Two different rods $A$ and $B$ are kept as shown in figure. The ratio of thermal conductivities of $A$ and $B$ is
A wall consists of alternating blocks of length $d$ and coefficient of thermal conductivity $K_{1}$ and $K_{2}$ respectively as shown in figure. The cross sectional area of the blocks are the same. The equivalent coefficient of thermal conductivity of the wall between left and right is
Which of the following statements is/are $CORRECT$ Correct option are
$(i)$ a body with large reflectivity is a poor emitter
$(ii)$ a brass tumbler feels much colder than a wooden tray on a chilly day
$(iii)$ the earth without its atmosphere would be inhospitably cold
$(iv)$ heating systems based on circulation of steam are more efficient in warming a building than those based on circulation of hot water
A copper rod $2\,m$ long has a circular cross-section of radius $1\, cm$. One end is kept at $100^o\,C$ and the other at $0^o\,C$ and the surface is covered by nonconducting material to check the heat losses through the surface. The thermal resistance of the bar in degree kelvin per watt is (Take thermal conductivity $K = 401\, W/m-K$ of copper):-