Two rods of same material have same length and area. The heat $\Delta Q$ flows through them for $12\,minutes$ when they are jointed in series. If now both the rods are joined in parallel, then the same amount of heat $\Delta Q$ will flow in ........ $\min$
$24$
$3$
$12$
$6$
Three rods of Copper, Brass and Steel are welded together to form a $Y$ shaped structure. Area of cross - section of each rod $= 4\ cm^2$ . End of copper rod is maintained at $100^o C $ where as ends ofbrass and steel are kept at $0^o C$. Lengths of the copper, brass and steel rods are $46, 13$ and $12\ cms$ respectively. The rods are thermally insulated from surroundings excepts at ends. Thermal conductivities of copper, brass and steel are $0.92, 0.26$ and $0.12\ CGS$ units respectively. Rate ofheat flow through copper rod is ....... $cal\, s^{-1}$
Two materials having coefficients of thermal conductivity $3K$ and $K$ and thickness $d$ and $3d$, respectively, are joined to form a slab as shown in the figure. The temperatures of the outer surfaces are $\theta_2$ and $\theta_1$ respectively $\left( {\theta _2} > {\theta _1} \right)$ . The temperature at the interface is
One end of a thermally insulated rod is kept at a temperature $T_1$ and the other at $T_2$. The rod is composed of two sections of lengths $l_1$ and $l_2$ and thermal conductivities $K_1$ and $K_2$ respectively. The temperature at the interface of the two sections is
Two identical square rods of metal are welded end to end as shown in figure $(a)$. Assume that $10\, cal$ of heat flows through the rods in $2\, min$. Now the rods are welded as shown in figure, $(b)$. The time it would take for $10$ cal to flow through the rods now, is ........ $\min$
Four rods of silver, copper, brass and wood are of same shape. They are heated together after wrapping a paper on it, the paper will burn first on