3 and 4 .Determinants and Matrices
hard

एक निर्माता तीन प्रकार की वस्तुएँ $x, y,$ तथा $z$ का उत्पादन करता है जिन का वह दो बाजारों में विक्रय करता है। वस्तुओं की वार्षिक बिक्री नीचे सूचित (निदर्शित) है: 

बाज्ञार $x$ उत्पादन $z$
$I$ $10,000$ $2,000$ $18,000$
$II$ $6,000$ $20,000$ $8,000$

यदि उपर्युक्त तीन वस्तुओं की प्रत्येक इकाई की लागत (Cost) क्रमशः $Rs.\, 2.00$, $Rs.\, 1.00$ तथा पैसे $50$ है तो कुल लाभ (Gross profit) ज्ञात कीजिए।

A

$32,000$

B

$32,000$

C

$32,000$

D

$32,000$

Solution

The unit cost price of $x,\,y$ and $z$ are respectively given as $\mathrm{Rs}.\, 2.00 $ $\mathrm{Rs}. \,1.00$ and $50$ paise.

Consequently, the total cost prices of all the products in the market I can be represented in the form of a matrix as :

$\left[\begin{array}{lll}10000 & 2000 & 18000\end{array}\right]\left[\begin{array}{l}2.50 \\ 1.00 \\ 0.50\end{array}\right]$

$=10000 \times 2.00+2000 \times 1.00+18000 \times 0.50$

$=20000+2000+9000=31000$

since the total revenue in market $\mathrm{I}$ is $ \mathrm{Rs}\, 46000,$ the gross profit in this market is $\mathrm{Rs}.\, 46000- \mathrm{Rs}. \,31000=\mathrm{Rs}. \,15000$

The total cost prices of all the products in market $II$ can be represented in the form of a matrix as:

$\left[\begin{array}{lll}6000 & 20000 & 8000\end{array}\right]\left[\begin{array}{l}2.00 \\ 1.00 \\ 0.50\end{array}\right]$

$=6000 \times 2.00+20000 \times 1.00+8000 \times 0.50$

$=12000+20000+4000$

$=36000$

since the total revenue in market $\mathrm{I} \mathrm{I}$ is $\mathrm{Rs} 53000,$ the gross profit in this market is $ \mathrm{Rs}.$ $53000-$ $ \mathrm{Rs}.$ $36000=$ $ \mathrm{Rs}. \,17000$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.