3 and 4 .Determinants and Matrices
hard

माना $M =\left\{ A =\left(\begin{array}{ll} a & b \\ c & d \end{array}\right): a , b , c , d \in\{\pm 3, \pm 2, \pm 1,0\}\right\}$ है। $f: M \rightarrow Z ( Z \equiv$ सभी पूर्णाको का समूह) ; $f( A )=\operatorname{det}( A )$, सभी $A \in M$, द्वारा परिभाषित है। तो उन $A \in M$ की संख्या जिनके लिए $f( A )=15$ है

A

$16$

B

$32$

C

$48$

D

$71$

(JEE MAIN-2021)

Solution

$|\mathrm{A}|=\mathrm{ad}-\mathrm{bc}=15$

where $a, b, c, d \in\{\pm 3, \pm 2, \pm 1,0\}$

Case $\mathrm{I} \mathrm{ad}=9 \,\& \,\mathrm{bc}=-6$

For ad possible pairs are $(3,3),(-3,-3)$

For bc possible pairs are $(3,-2),(-3,2),(-2,3),\left(2_{6}-3\right)$

So total matrix $=2 \times 4=8$

Case $II$ ad $=6 \,\&\, \mathrm{bc}=-9$

Similarly total matrix $=2 \times 4=8$

$\Rightarrow$ Total such matrices are $=16$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.