Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

A mass $m$ moves with a velocity $v$ and collides inelastically with another identical mass initially at rest. After collision the first mass moves with velocity $\frac{v}{\sqrt 3}$ in a  direction perpendicular to its initial direction of motion. The speed of second mass after collision is 

A

$\frac{2}{\sqrt 3}v$

B

$\frac{v}{\sqrt 3}$

C

$v$

D

$\sqrt 3 \,v$

Solution

$\mathrm{m}_{1} \overrightarrow{\mathrm{u}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{u}}_{2}=\mathrm{m}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{v}}_{2}$

$m\left(v^{\hat{i}}\right)+m(0)=m\left(\frac{v}{\sqrt{3}} \hat{j}\right)+m \vec{v}_{2}$

$\Rightarrow \overrightarrow{\mathrm{v}}_{2}=\mathrm{v\hat i}-\frac{\mathrm{v}}{\sqrt{3}} \hat{\mathrm{j}}$

$\therefore\left|\overrightarrow{\mathrm{v}}_{2}\right|=\sqrt{\mathrm{v}^{2}+\left(\frac{\mathrm{v}}{\sqrt{3}}\right)^{2}}=\frac{2}{\sqrt{3}} \mathrm{v}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.