A force $\overrightarrow F = (5\hat i + 3\hat j)$Newton is applied over a particle which displaces it from its origin to the point $\overrightarrow r = (2\hat i - 1\hat j)$ metres. The work done on the particle is..............$J$
$-7$
$+13$
$+7$
$+11$
In one dimensional case, the relationship between force and position is shown in the figure. The work done by the force in displacing a body from $x = 1\, cm$ to $x = 5\, cm$ is ............ $\mathrm{ergs}$
A rope is used to lower vertically a block of mass $M$ by a distance $x$ with a constant downward acceleration $\frac{g}{2}$. The work done by the rope on the block is
State if each of the following statements is true or false. Give reasons for your answer.
$(a)$ In an elastic collision of two bodies, the momentum and energy of each body is conserved.
$(b)$ Total energy of a system is always conserved, no matter what internal and external forces on the body are present.
$(c)$ Work done in the motion of a body over a closed loop is zero for every force in nature.
$(d)$ In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system.
A particle moves along $x$-axis from $x=0$ to $x=5$ metre under the influence of a force $F=7-2 x+3 x^2$. The work done in the process is .............
In an elastic collision of two particles the following quantity is conserved