Gujarati
Hindi
6.System of Particles and Rotational Motion
hard

A mass $M= 40\  kg$ is fixed at the very edge of a long plank of mass $80\  kg$ and length $1\ m$ which is pivoted such that it is in equilibrium. How far (approx.) from the pivot should a mass of $100\  kg$ be attached so that the plank starts rotating with an angular acceleration of $1\ rad/s^2$?

A

$\frac{1}{{75}}\,m$

B

$\frac{1}{{25}}\,m$

C

$\frac{1}{{15}}\,m$

D

$\frac{1}{{45}}\,m$

Solution

$80 \mathrm{gl}=40 \mathrm{g}\left(\frac{1}{2}-l\right)$

$2 l=\frac{1}{2}-l$

$3 l=\frac{1}{2}$

$l=\frac{1}{6} \mathrm{m}$

$100 \mathrm{g} \mathrm{x}=1 \alpha \Rightarrow 1000 \mathrm{x}$

$=\left(\frac{80 \times 1^{2}}{12}+80 \times\left(\frac{1}{6}\right)^{2}+40 \times\left(\frac{1}{3}\right)^{2}+100 \times x^{2}\right) \times 1$

$=\frac{\left(240+80+160+3600 x^{2}\right)}{36}$

$\Rightarrow 300 x^{2}-3000 x+40=0$

$\Rightarrow 30 \mathrm{x}^{2}-300 \mathrm{x}+4=0$

$x=\frac{300 \pm \sqrt{90000-480}}{60}$

$\approx \frac{240}{300 \times 60}$                                                                                

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.