A mass of $1\, kg$ is hanging from a spring of spring constant $1\, N/m$. If Saroj pulls the mass down by $2\,m$. The work done by Saroj is......$J$
$1$
$2$
$3$
$4$
A smooth semicircular tube $AB$ of radius $R$ is fixed in a verticle plane and contain a heavy flexible chain of length $\pi R$ . Find the velocity $v$ with which it will emerge from the open end $'B'$ of' tube, when slightly displaced
This question has Statement $1$ and Statement $2$. Of the four choices given after the Statements, choose the one that best describes the two Statements.
If two springs $S_1$ and $S_2$ of force constants $k_1$ and $k_2$, respectively, are stretched by the same force, it is found that more work is done on spring $S_1$ than on spring $S_2$.
STATEMENT 1 : If stretched by the same amount work
done on $S_1$, Work done on $S_1$ is more than $S_2$
STATEMENT2: $k_1 < k_2$
The length of a spring is a when $\alpha $ force of $4\,N$ is applied on it and the length is $\beta $ when $5\,N$ force is applied. Then the length of spring when $9\,N$ force is applied is
A ball of mass $4\, kg$, moving with a velocity of $10\, ms ^{-1}$, collides with a spring of length $8\, m$ and force constant $100\, Nm ^{-1}$. The length of the compressed spring is $x\, m$. The value of $x$, to the nearest integer, is ........ .
In stretching a spring by $2\,cm$ energy stored is given by $U,$ then more stretching by $10\,cm$ energy stored will be