A mathematical representation of electromagnetic wave is given by the two equations $E = E_{max}\,\, cos (kx -\omega\,t)$ and $B = B_{max} cos\, (kx -\omega\,t),$ where $E_{max}$ is the amplitude of the electric field and $B_{max}$ is the amplitude of the magnetic field. What is the intensity in terms of $E_{max}$ and universal constants $μ_0, \in_0.$

  • A

    $I=\frac{1}{2}\sqrt {\frac{\mu_0}{\in_0}E^2_{max}}$

  • B

    $I=\frac{1}{2}\sqrt {\frac{\in_0}{\mu_0}E^2_{max}}$

  • C

    $I=2\sqrt {\frac{\mu_0}{\in_0}E^2_{max}}$

  • D

    $I=2\sqrt {\frac{\in_0}{\mu_0}E^2_{max}}$

Similar Questions

The electric field of plane electromagnetic wave of amplitude $2\,V/m$ varies with time, propagating along $z-$ axis. The average energy density of magnetic field (in $J/m^3$ ) is

The oscillating magnetic field in a plane electromagnetic wave is given by $B _{ y }=5 \times 10^{-6} \sin$ $1000\,\pi\left(5 x -4 \times 10^{8} t \right) T$. The amplitude of electric field will be.

  • [JEE MAIN 2022]

In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10}\; Hz$ and amplitude $48\; Vm ^{-1}$

$(a)$ What is the wavelength of the wave?

$(b)$ What is the amplitude of the oscillating magnetic field?

$(c)$ Show that the average energy density of the $E$ field equals the average energy density of the $B$ field. $\left[c=3 \times 10^{8} \;m s ^{-1} .\right]$

In the given electromagnetic wave $E_y=600 \sin (\omega t-k x) \mathrm{Vm}^{-1}$, intensity of the associated light beam is (in $\mathrm{W} / \mathrm{m}^2$ ); (Given $\epsilon_0=$ $\left.9 \times 10^{-12} \mathrm{C}^{-2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$

  • [JEE MAIN 2024]

A light wave is incident normally on a glass slab of refractive index $1.5$. If $4\%$ of light gets reflected and the amplitude of the electric field of the incident light is $30\, V/m$, then the amplitude of the electric field for the wave propagating in the glass medium will be.......$ V/m$

  • [JEE MAIN 2019]