A plane electromagnetic wave of frequency $28 \,MHz$ travels in free space along the positive $x$-direction. At a particular point in space and time, electric field is $9.3 \,V / m$ along positive $y$-direction. The magnetic field (in $T$ ) at that point is
$3.1 \times 10^{-8}$ along positive $z$-direction
$3.1 \times 10^{-8}$ along negative $z$-direction
$3.2 \times 10^7$ along positive $z$-direction
$3.2 \times 10^7$ along negative $z$-direction
The electric field associated with an electromagnetic wave propagating in a dielectric medium is given by $\vec{E}=30(2 \hat{x}+\hat{y}) \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] \mathrm{V} \mathrm{m}^{-1}$. Which of the following option($s$) is(are) correct?
[Given: The speed of light in vacuum, $c=3 \times 10^8 \mathrm{~ms}^{-1}$ ]
($A$) $B_x=-2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] \mathrm{Wbm}^{-2}$.
($B$) $B_y=2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] \mathrm{Wbm}^{-2}$
($C$) The wave is polarized in the $x y$-plane with polarization angle $30^{\circ}$ with respect to the $x$-axis.
($D$) The refractive index of the medium is $2$ .
A plane electromagnetic wave of frequency $25\; \mathrm{GHz}$ is propagating in vacuum along the $z-$direction. At a particular point in space and time, the magnetic field is given by $\overrightarrow{\mathrm{B}}=5 \times 10^{-8} \hat{\mathrm{j}}\; \mathrm{T}$. The corresponding electric field $\overrightarrow{\mathrm{E}}$ is (speed of light $\mathrm{c}=3 \times 10^{8}\; \mathrm{ms}^{-1})$
The electric field in a plane electromagnetic wave is given by
$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$
If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.
In an electromagnetic wave the electric field vector and magnetic field vector are given as $\vec{E}=E_{0} \hat{i}$ and $\vec{B}=B_{0} \hat{k}$ respectively. The direction of propagation of electromagnetic wave is along.
In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10}\; Hz$ and amplitude $48\; Vm ^{-1}$
$(a)$ What is the wavelength of the wave?
$(b)$ What is the amplitude of the oscillating magnetic field?
$(c)$ Show that the average energy density of the $E$ field equals the average energy density of the $B$ field. $\left[c=3 \times 10^{8} \;m s ^{-1} .\right]$