A plane electromagnetic wave of frequency $28 \,MHz$ travels in free space along the positive $x$-direction. At a particular point in space and time, electric field is $9.3 \,V / m$ along positive $y$-direction. The magnetic field (in $T$ ) at that point is

  • A

    $3.1 \times 10^{-8}$ along positive $z$-direction

  • B

    $3.1 \times 10^{-8}$ along negative $z$-direction

  • C

    $3.2 \times 10^7$ along positive $z$-direction

  • D

    $3.2 \times 10^7$ along negative $z$-direction

Similar Questions

A plane electromagnetic wave of wave intensity $6\,W/m^2$ strike a small mirror of area $30\,cm^2$ , held perpendicular to a approching wave. The momentum transmitted in $kg\, m/s$ by the wave to the mirror each second will be

Two electrons are moving with same speed $v$. One electron enters a region of uniform electric field while the other enters a region of uniform magnetic field. Then after some time if the de-broglie wavelength of the two are ${\lambda _1}$ and ${\lambda _2}$  then

An electromagnetic wave of frequency $1\times10^{14}\, hertz$ is propagating along $z-$ axis. The amplitude of electric field is $4\, V/m$ . lf ${\varepsilon_0}=\, 8.8\times10^{-12}\, C^2/Nm^2$ , then average energy density of electric field will be:

  • [JEE MAIN 2014]

Sun light falls normally on a surface of area $36\,cm ^{2}$ and exerts an average force of $7.2 \times 10^{-9}\,N$ within a time period of $20$ minutes. Considering a case of complete absorption, the energy flux of incident light is.

  • [JEE MAIN 2022]

In an electromagnetic wave the energy density associated with magnetic field will be