A metallic shell has a point charge $'q'$ kept inside its cavity. Which one of the following diagrams correctly represents the electric field lines

  • A
    818-a765
  • B
    818-b765
  • C
    818-c765
  • D
    818-d765

Similar Questions

Electric potential at any point is : $V = -5x + 3y + \sqrt {15} z$ ; then the magnitude of electric field is :-

A parallel plate capacitor of capacitance $C$ is connected to a battery and is charged to a potential difference $V$ . Another capacitor of capacitance $2C$ is similarly charged to a potential difference $2V$ . The charging battery is now disconnected and the capacitors are connect in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of  the configuration is

A parallel plate capacitor has plates with area $A$ and separation $d$ . A battery charges the plates to a potential difference $V_0$. The battery is then disconnected and a dielectric slab of thickness $d $ is introduced. The ratio of energy stored in the capacitor before and after the slab is introduced is

A point charge $q$ is situated at a distance $d$ from one end of a thin non - conducting rod of length $L$ having a charge $Q$ (uniformly distributed along its length) as shown in fig.Then the magnitude of electric force between them is

The plates of a parallel plate capacitor are charged up to $100\, volt$ . A $2\, mm$ thick plate is inserted between the plates, then to maintain the same potential difference, the distance between the capacitor plates is increased by $1.6\, mm$ . The dielectric constant of the plate is