A metre stick is pivoted about its centre. A piece of wax of mass $20 \,g$ travelling horizontally and perpendicular to it at $5 \,m / s$ strikes and adheres to one end of the stick so that the stick starts to rotate in a horizontal circle. Given the moment of inertia of the stick and wax about the pivot is $0.02 \,kg m ^2$, the initial angular velocity of the stick is ........... $rad / s$
$1.58$
$2.24$
$2.50$
$5.00$
A flywheel can rotate in order to store kinetic energy. The flywheel is a uniform disk made of a material with a density $\rho $ and tensile strength $\sigma $ (measured in Pascals), a radius $r$ , and a thickness $h$ . The flywheel is rotating at the maximum possible angular velocity so that it does not break. Which of the following expression correctly gives the maximum kinetic energy per kilogram that can be stored in the flywheel ? Assume that $\alpha $ is a dimensionless constant
A ring of mass $M$ and radius $R$ is rotating with angular speed $\omega$ about a fixed vertical axis passing through its centre $O$ with two point masses each of mass $\frac{ M }{8}$ at rest at $O$. These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one of the masses is at a distance of $\frac{3}{5} R$ from $O$. At this instant the distance of the other mass from $O$ is
Define angular momentum.
Find the components along the $x, y, z$ axes of the angular momentum $l$ of a particle. whose position vector is $r$ with components $x, y, z$ and momentum is $p$ with components $p_{ r }, p_{ y }$ and $p_{z} .$ Show that if the particle moves only in the $x -y$ plane the angular momentum has only a $z-$component.
In the List-$I$ below, four different paths of a particle are given as functions of time. In these functions, $\alpha$ and $\beta$ are positive constants of appropriate dimensions and $\alpha \neq \beta$. In each case, the force acting on the particle is either zero or conservative. In List-II, five physical quantities of the particle are mentioned: $\overrightarrow{ p }$ is the linear momentum, $\bar{L}$ is the angular momentum about the origin, $K$ is the kinetic energy, $U$ is the potential energy and $E$ is the total energy. Match each path in List-$I$ with those quantities in List-$II$, which are conserved for that path.
List-$I$ | List-$II$ |
$P$ $\dot{r}(t)=\alpha t \hat{t}+\beta t \hat{j}$ | $1$ $\overrightarrow{ p }$ |
$Q$ $\dot{r}(t)=\alpha \cos \omega t \hat{i}+\beta \sin \omega t \hat{j}$ | $2$ $\overrightarrow{ L }$ |
$R$ $\dot{r}(t)=\alpha(\cos \omega t \hat{i}+\sin \omega t \hat{j})$ | $3$ $K$ |
$S$ $\dot{r}(t)=\alpha t \hat{i}+\frac{\beta}{2} t^2 \hat{j}$ | $4$ $U$ |
$5$ $E$ |