The potential energy of a particle of mass $m$ at a distance $r$ from a fixed point $O$ is given by $\mathrm{V}(\mathrm{r})=\mathrm{kr}^2 / 2$, where $\mathrm{k}$ is a positive constant of appropriate dimensions. This particle is moving in a circular orbit of radius $\mathrm{R}$ about the point $\mathrm{O}$. If $\mathrm{v}$ is the speed of the particle and $\mathrm{L}$ is the magnitude of its angular momentum about $\mathrm{O}$, which of the following statements is (are) true?

$(A)$ $v=\sqrt{\frac{k}{2 m}} R$

$(B)$ $v=\sqrt{\frac{k}{m}} R$

$(C)$ $\mathrm{L}=\sqrt{\mathrm{mk}} \mathrm{R}^2$

$(D)$ $\mathrm{L}=\sqrt{\frac{\mathrm{mk}}{2}} \mathrm{R}^2$

  • [IIT 2018]
  • A

    $A,C$

  • B

    $B,C$

  • C

    $A,D$

  • D

    $A,C,D$

Similar Questions

A particle is moving along a straight line with increasing speed. Its angular momentum about a fixed point on this line

A disc of mass  $M$  and radius  $R$  is rolling with angular speed $\omega $ on a horizontal plane as shown. The magnitude of angular momentum of the disc about the origin $O$ is

A ball of mass $1 \,kg$ is projected with a velocity of $20 \sqrt{2}\,m / s$ from the origin of an $x y$ co-ordinate axis system at an angle $45^{\circ}$ with $x$-axis (horizontal). The angular momentum [In $SI$ units] of the ball about the point of projection after $2 \,s$ of projection is [take $g=10 \,m / s ^2$ ] ( $y$-axis is taken as vertical)

A ring of mass $M$ and radius $R$ is rotating with angular speed $\omega$ about a fixed vertical axis passing through its centre $O$ with two point masses each of mass $\frac{ M }{8}$ at rest at $O$. These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one of the masses is at a distance of $\frac{3}{5} R$ from $O$. At this instant the distance of the other mass from $O$ is

  • [IIT 2015]

A body of mass $5 \mathrm{~kg}$ moving with a uniform speed $3 \sqrt{2} \mathrm{~ms}^{-1}$ in $\mathrm{X}-\mathrm{Y}$ plane along the line $\mathrm{y}=\mathrm{x}+4$.The angular momentum of the particle about the origin will be______________ $\mathrm{kg}\  \mathrm{m} \mathrm{s}^{-1}$.

  • [JEE MAIN 2024]