Gujarati
Hindi
11.Thermodynamics
medium

A motor-car tyre has a pressure of $2\, atm$ at $27\,^oC$. It suddenly burst's. If $\left( {\frac{{{C_p}}}{{{C_v}}}} \right) = 1.4$ for air, find the resulting temperatures (Given $4^{1/7} = 1.219$)

A

$27\, K$

B

$27\,^oC$

C

$-27\,^oC$

D

$246\,^oC$

Solution

$\mathrm{PV}^{\gamma}=$ constant (Adiabatic suddenly)

$\mathrm{P}_{1} \mathrm{V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{V}_{2}^{\gamma}$

or $\quad \mathrm{T} \mathrm{P}^{(1-\gamma) / \gamma}=$ constant

$\mathrm{T}_{1} \mathrm{P}_{1}^{(1-\mathrm{\gamma}) / \gamma}=\mathrm{T}_{2} \mathrm{P}_{2}^{(1-\gamma) / \gamma}$

$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{(\mathrm{1}-\mathrm{y}) / \gamma}=\mathrm{T}_{1}(2)^{\frac{-0.4}{1.4}}=\frac{300}{(4)^{1 / 7}}$

$\Rightarrow \mathrm{T}_{2}=246 \mathrm{K}=-27^{\circ} \mathrm{C}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.