11.Thermodynamics
medium

A mass of diatomic gas $(\gamma = 1 .4)$ at a pressure of $2$ atmospheres is compressed adiabatically so that its temperature rises from $27^o C$ to $927^o C.$ The pressure of the gas in the final state is  ...... $atm$

A

$8$

B

$28$

C

$68.7$

D

$256$

(AIPMT-2011)

Solution

For an adiabatic process

$\frac{{{T^\gamma }}}{{{P^{\gamma  – 1}}}} = constant$

$\therefore \,{\left( {\frac{{{T_i}}}{{{T_f}}}} \right)^\gamma } = {\left( {\frac{{{p_i}}}{{{p_f}}}} \right)^{\gamma  – 1}}\,\,;\,\,{p_f} = {p_i}{\left( {\frac{{{T_f}}}{{{T_i}}}} \right)^{\frac{\gamma }{{\gamma  – 1}}}}$                $…(i)$ 

$Here,\,{T_i} = {27^ \circ }C = 300\,K,\,{T_f} = {927^ \circ }C = 1200\,k$

${p_i} = 2\,atm,\,\gamma  = 1.4$

Substituting these values in eqn $(i)$, we get

${P_f} = \left( 2 \right){\left( {\frac{{1200}}{{300}}} \right)^{\frac{{1.4}}{{1.4 – 1}}}}$

$ = \left( 2 \right){\left( 4 \right)^{1.4/0.4}} = 2{\left( {{2^2}} \right)^{7/2}} = \left( 2 \right){\left( 2 \right)^7} = {2^8} = 256\,atm$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.