A negative point charge placed at the point $A$ is

115-911

  • A

    in stable equilibrium along $x-$axis

  • B

    in unstable equilibrium along $x-$axis

  • C

    in stable equilibrium along $y-$axis

  • D

    $B$ and $C$ both

Similar Questions

A particle of mass $m$ having negative charge $q$ move along an ellipse around a fixed positive charge $Q$ so that its maximum and minimum distances from fixed charge are equal to $r_1$ and $r_2$ respectively. The angular momentum $L$ of this particle is

Two charges of magnitude $5\, nC$ and $-2\, nC$, one placed at points $(2\, cm, 0, 0)$ and $(x\, cm, 0, 0)$ in a region of space, where there is no other external field. If the electrostatic potential energy of the system is $ - 0.5\,\mu J$. The value of $x$ is.....$cm$

$(a)$ Calculate the potential at a point $P$ due to a charge of $4 \times 10^{-7}\; C$ located $9 \;cm$ away.

$(b)$ Hence obtain the work done in bringing a charge of $2 \times 10^{-9} \;C$ from infinity to the point $P$. Does the answer depend on the path along which the charge is brought?

Four identical charges $ + \,50\,\mu C$ each are placed, one at each corner of a square of side $2\,m$. How much external energy is required to bring another charge of $ + \,50\,\mu C$ from infinity to the centre of the square......$J$ $\left( {{\rm{Given}}\frac{{\rm{1}}}{{{\rm{4}}\pi {\varepsilon _{\rm{0}}}}} = 9 \times {{10}^9}\,\frac{{N{m^2}}}{{{C^2}}}} \right)$

The mean free path of electrons in a metal is $4 \times 10^{-8} \;m$. The electric field which can give on an average $2 \;eV$ energy to an electron in the metal will be in units of $V / m$

  • [AIPMT 2009]