A non uniformly shaped conductor is charged then at it's sharpest point
Electric potential will be maximum
Electric field will be maximum
Charge density will be minimum
Electric potential will be minimum
The electric field $\vec E$ between two points is constant in both magnitude and direction. Consider a path of length d at an angle $\theta = 60^o$ with respect to field lines shown in figure. The potential difference between points $1$ and $2$ is
Do free electrons travel to region of higher potential or lower potential ?
Uniform electric field of magnitude $ 100$ $V/m$ in space is directed along the line $y$ $=$ $3$ $+$ $x$. Find .........$V$ the potential difference between point $A (3, 1)$ $ \&$ $ B$ $ (1, 3)$
Two charge $ + \,q$ and $ - \,q$ are situated at a certain distance. At the point exactly midway between them
Figure shows a solid hemisphere with a charge of $5\ nC$ distributed uniformly through its volume. The hemisphere lies on a plane and point $P$ is located on this plane, along a radial line from the centre of curvature at distance $15\ cm$. The electric potential at point $P$ due to the hemisphere, is .....$V$