The electric potential at the surface of an atomic nucleus $(Z = 50)$ of radius $9.0×{10^{ - 13}}\, cm$ is
$80\, volts$
$8 × {10^6}\,volts$
$9\, volts$
$9 × {10^5}\,volts$
Charges are placed on the vertices of a square as shown Let $\vec E$ be the electric field and $V$ the potential at the centre. If the charges on $A$ and $B$ are interchanged with those on $D$ and $C$ respectively, then
Some charge is being given to a conductor. Then its potential is
A spherical conductor of radius $2m$ is charged to a potential of $120\, V$. It is now placed inside another hollow spherical conductor of radius $6m$. Calculate the potential to which the bigger sphere would be raised......$V$
A charge of total amount $Q$ is distributed over two concentric hollow spheres of radii $r$ and $R ( R > r)$ such that the surface charge densities on the two spheres are equal. The electric potential at the common centre is
A hemispherical bowl of mass $m$ is uniformly charged with charge density $'\sigma '$ . Electric potential due to charge distribution at a point $'A'$ is (which lies at centre of radius as shown).