A parallel plate air capacitor has a capacitance of $100\,\mu F$. The plates are at a distance $d$ apart. If a slab of thickness $t(t \le d)$and dielectric constant $5$ is introduced between the parallel plates, then the capacitance will be.......$\mu F$
$50$
$100$
$200$
$500$
An air capacitor of capacity $C = 10\,\mu F$ is connected to a constant voltage battery of $12\,V$. Now the space between the plates is filled with a liquid of dielectric constant $5$. The charge that flows now from battery to the capacitor is......$\mu C$
A capacitor of capacitance $9 n F$ having dielectric slab of $\varepsilon_{ r }=2.4$ dielectric strength $20\, MV / m$ and $P.D. =20 \,V$ then area of plates is ....... $\times 10^{-4}\, m ^{2}$
A parallel plate air capacitor is charged and then isolated. When a dielectric material is inserted between the plates of the capacitor, then which of the following does not change
In the figure a capacitor is filled with dielectrics. The resultant capacitance is
The capacitance of an air filled parallel plate capacitor is $10\,p F$. The separation between the plates is doubled and the space between the plates is then filled with wax giving the capacitance a new value of $40 \times {10^{ - 12}}farads$. The dielectric constant of wax is