A parallel plate capacitor having crosssectional area $A$ and separation $d$ has air in between the plates. Now an insulating slab of same area but thickness $d/2$ is inserted between the plates as shown in figure having dielectric constant $K (=4) .$ The ratio of new capacitance to its original capacitance will be,

981-334

  • [NEET 2020]
  • A

    $4:1$

  • B

    $2:1$

  • C

    $8:5$

  • D

    $6:5$

Similar Questions

Three identical capacitors $\mathrm{C}_1, \mathrm{C}_2$ and $\mathrm{C}_3$ have a capacitance of $1.0 \mu \mathrm{F}$ each and they are uncharged initially. They are connected in a circuit as shown in the figure and $\mathrm{C}_1$ is then filled completely with a dielectric material of relative permittivity $\varepsilon_{\mathrm{r}}$. The cell electromotive force (emf) $V_0=8 \mathrm{~V}$. First the switch $S_1$ is closed while the switch $S_2$ is kept open. When the capacitor $C_3$ is fully charged, $S_1$ is opened and $S_2$ is closed simultaneously. When all the capacitors reach equilibrium, the charge on $\mathrm{C}_3$ is found to be $5 \mu \mathrm{C}$. The value of $\varepsilon_{\mathrm{r}}=$. . . . 

(image)

  • [IIT 2018]

In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3}\; m ^{2}$ and the distance between the plates is $3 \;mm$ the capacitance of the capacitor is $17.71 \;pF$. If this capacitor is connected to a $100\; V$ supply, $3\; mm$ thick mica sheet (of dielectric constant $=6$ ) were inserted between the plates,

$(a)$ while the voltage supply remained connected.

$(b)$ after the supply was disconnected.

The capacity of a parallel plate capacitor with no dielectric substance but with a separation of $0.4 \,cm$ is $2\,\mu \,F$. The separation is reduced to half and it is filled with a dielectric substance of value $2.8$. The final capacity of the capacitor is.......$\mu \,F$

A parallel plate air-core capacitor is connected across a source of constant potential difference. When a dielectric plate is introduced between the two plates then :

A capacitor with plate separation $d$ is charged to $V$ volts. The battery is disconnected and a dielectric slab of thickness $\frac{d}{2}$ and dielectric constant ' $2$ ' is inserted between the plates. The potential difference across its terminals becomes