A parallel plate capacitor having a separation between the plates $d$ , plate area $A$ and material with dielectric constant $K$ has capacitance $C_0$. Now one-third of the material is replaced by another material with dielectric constant $2K$, so that effectively there are two capacitors one with area $\frac{1}{3}\,A$ , dielectric constant $2K$ and another with area $\frac{2}{3}\,A$ and dielectric constant $K$. If the capacitance of this new capacitor is $C$ then $\frac{C}{{{C_0}}}$ is

  • [JEE MAIN 2013]
  • A

    $1$

  • B

    $\frac{4}{3}$

  • C

    $\frac{2}{3}$

  • D

    $\frac{1}{3}$

Similar Questions

A capacitor has some dielectric between its plates and the capacitor is connected to a $\mathrm{D.C.}$ source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase, decrease or remain constant.

A capacitor of capacitance $15 \,nF$ having dielectric slab of $\varepsilon_{r}=2.5$ dielectric strength $30 \,MV / m$ and potential difference $=30\; volt$ then the area of plate is ....... $ \times 10^{-4}\; m ^{2}$

  • [AIIMS 2019]

A dielectric slab of dielectric constant $K$ is placed between the plates of a parallel plate capacitor carrying charge $q$. The induced charge $q^{\prime}$ on the surface of slab is given by

A parallel plate capacitor with plate separation $5$ $\mathrm{mm}$ is charged up by a battery. It is found that on introducing a dielectric sheet of thickness $2 \mathrm{~mm}$, while keeping the battery connections intact, the capacitor draws $25 \%$ more charge from the battery than before. The dielectric constant of the sheet is_____.

  • [JEE MAIN 2024]

A frictionless dielectric plate $S$ is kept on a frictionless table $T$. A charged parallel plate capacitance $C$ (of which the plates are frictionless) is kept near it. The plate $S$ is between the plates. When the plate $S$ is left between the plates