A parallel plate capacitor with width $4\,cm$, length $8\,cm$ and separation between the plates of $4\,mm$ is connected to a battery of $20\,V$. A dielectric slab of dielectric constant $5$ having length $1\,cm$, width $4\,cm$ and thickness $4\,mm$ is inserted between the plates of parallel plate capacitor. The electrostatic energy of this system will be......... $\in_{0}\,J$. (Where $\epsilon_{0}$ is the permittivity of free space)

  • [JEE MAIN 2022]
  • A

    $240$

  • B

    $241$

  • C

    $242$

  • D

    $243$

Similar Questions

The capacity of a parallel plate condenser is $10\,\mu F$ without dielectric. Dielectric of constant $2$ is used to fill half the distance between the plates, the new capacitance in $\mu F$ is

The capacity of an air condenser is $2.0\, \,\mu F$. If a medium is placed between its plates. The capacity becomes $ 12\, \,\mu F$. The dielectric constant of the medium will be

On which the extant of polarisation depend ?

Due to which the surface charge density arises on the surface of a dielectric slab, when it is placed in a uniform electric field ?

For changing the capacitance of a given parallel plate capacitor, a dielectric material of dielectric constant $K$ is used, which has the same area as the plates of the capacitor. The thickness of the dielectric slab is $\frac{3}{4} d$, where $'d'$ is the separation between the plates of parallel plate capacitor. The new capacitance $(C')$ in terms of original capacitance $\left( C _{0}\right)$ is given by the following relation

  • [JEE MAIN 2021]