- Home
- Standard 11
- Physics
3-2.Motion in Plane
normal
A particle at a distance of $1 m$ from the origin starts moving, such that $d r / d \theta=r$, where $r$ and $\theta$ are polar co-ordinates. Then, the angle between resultant velocity and tangential velocity is
A$30^{\circ}$
B$45^{\circ}$
C$60^{\circ}$
Ddependent on where the particle is
(KVPY-2016)
Solution

Angle $\alpha$ between velocity $v$ and tangential velocity $v _{r}$ is given by
$\tan \alpha=\frac{v_{\theta}}{v_{r}}$
$\Rightarrow \quad \tan \alpha=\frac{\left(r \frac{d \theta}{d t}\right)}{\left(\frac{d r}{d t}\right)}=r \cdot\left(\frac{d \theta}{d r}\right)$
$=\frac{r}{(d r / d \theta)}$
Here, given $\frac{d r}{d \theta}=r$
$\therefore \tan \alpha=\frac{r}{r}=1$
$\Rightarrow \alpha=\tan ^{-1}(1)=45^{\circ}$
Standard 11
Physics