A particle describes a horizontal circle in a conical funnel whose inner surface is smooth with speed of $0.5 \,m/s$. What is the height of the plane of circle from vertex of the funnel ........ $cm$
$0.25$
$2 $
$4$
$2.5 $
The work done on a particle of mass $m$ by a force, $k\left[\frac{x}{\left(x^2+y^2\right)^{3 / 2}} \hat{i}+\frac{y}{\left(x^2+y^2\right)^{3 / 2}} \hat{j}\right]$ ( $K$ being a constant of appropriate dimensions), when the particle is taken from the point $(a, 0)$ to the point $(0, a )$ along a circular path of radius a about the origin in the $x$-y plane is :
car moves on a circular road. It describes equal angles about the centre in equal intervals of time. Which of the following statement about the velocity of the car is true
A train is moving towards north. At one place it turns towards north-east, here we observe that
A particle moving in a circle of radius $R$ with uniform speed takes time $\mathrm{T}$ to complete one revolution. If this particle is projected with the same speed at an angle $\theta$ to the horizontal, the maximum height attained by it is equal to $4 R$. The angle of projection $\theta$ is then given by :
A car changes speed from $18\,km/h$ to $36\,km/h$ in $5\,s$. The diameter of its wheel is $0.8\,m$ . The angular acceleration of the wheel is ........ $rad/s^2$