A particle is moving along a straight line parallel to $x$-axis with constant velocity. Find angular momentum about the origin in vector form
$+m v^2 b \hat{k}$
$-m v b \hat{k}$
$-2 m v b \hat{k}$
$-m v b \hat{j}$
Write the general formula of total angular moment of rotational motion about a fixed axis.
A particle of mass $m$ moves in the $XY$ plane with a velocity $v$ along the straight line $AB.$ If the angular momentum of the particle with respect to origin $O$ is $L_A$ when it is at $A$ and $L_B$ when it is at $B,$ then
$A$ ball of mass $m$ moving with velocity $v$, collide with the wall elastically as shown in the figure.After impact the change in angular momentum about $P$ is:
The potential energy of a particle of mass $m$ at a distance $r$ from a fixed point $O$ is given by $\mathrm{V}(\mathrm{r})=\mathrm{kr}^2 / 2$, where $\mathrm{k}$ is a positive constant of appropriate dimensions. This particle is moving in a circular orbit of radius $\mathrm{R}$ about the point $\mathrm{O}$. If $\mathrm{v}$ is the speed of the particle and $\mathrm{L}$ is the magnitude of its angular momentum about $\mathrm{O}$, which of the following statements is (are) true?
$(A)$ $v=\sqrt{\frac{k}{2 m}} R$
$(B)$ $v=\sqrt{\frac{k}{m}} R$
$(C)$ $\mathrm{L}=\sqrt{\mathrm{mk}} \mathrm{R}^2$
$(D)$ $\mathrm{L}=\sqrt{\frac{\mathrm{mk}}{2}} \mathrm{R}^2$
In the List-$I$ below, four different paths of a particle are given as functions of time. In these functions, $\alpha$ and $\beta$ are positive constants of appropriate dimensions and $\alpha \neq \beta$. In each case, the force acting on the particle is either zero or conservative. In List-II, five physical quantities of the particle are mentioned: $\overrightarrow{ p }$ is the linear momentum, $\bar{L}$ is the angular momentum about the origin, $K$ is the kinetic energy, $U$ is the potential energy and $E$ is the total energy. Match each path in List-$I$ with those quantities in List-$II$, which are conserved for that path.
List-$I$ | List-$II$ |
$P$ $\dot{r}(t)=\alpha t \hat{t}+\beta t \hat{j}$ | $1$ $\overrightarrow{ p }$ |
$Q$ $\dot{r}(t)=\alpha \cos \omega t \hat{i}+\beta \sin \omega t \hat{j}$ | $2$ $\overrightarrow{ L }$ |
$R$ $\dot{r}(t)=\alpha(\cos \omega t \hat{i}+\sin \omega t \hat{j})$ | $3$ $K$ |
$S$ $\dot{r}(t)=\alpha t \hat{i}+\frac{\beta}{2} t^2 \hat{j}$ | $4$ $U$ |
$5$ $E$ |