A solid cylinder of mass $2\ kg$ and radius $0.2\,m$ is rotating about its own axis without friction with angular velocity $3\,rad/s$. A particle of mass $0.5\ kg$ and moving with a velocity $5\ m/s$ strikes the cylinder and sticks to it as shown in figure. The angular momentum of the cylinder before collision will be ........ $J-s$

801-24

  • A

    $0.12$

  • B

    $12$

  • C

    $1.2$

  • D

    $ 1.12$

Similar Questions

A small mass $m$ is attached to a massless string whose other end is fixed at $P$ as shown in figure. The mass is undergoing circular motion in $x-y$ plane with centre $O$ and constant angular speed $\omega $ . If the angular momentum of the system, calculated about $O$ and $P$ and denoted by $\vec L_o$ and $\vec L_p$ respectively, then

A small particle of mass $m$ is projected at an angle $\theta $ with the $x-$ axis with an initial velocity $v_0$ in the $x-y$ plane as shown in the figure. At a time $t < \frac{{{v_0}\,\sin \,\theta }}{g}$, the angular momentum of the particle is

  • [AIEEE 2010]

If the resultant of all the external forces acting on a system of particles is zero, then from an inertial frame, one can surely say that

  • [IIT 2009]

$A$ block of mass $m$ moves on a horizontal rough surface with initial velocity $v$. The height of the centre of mass of the block is $h$ from the surface. Consider a point $A$ on the surface.

Consider a particle of mass $m$ having linear momentum $\vec p$ at position $\vec r$ relative to the origin $O$ . Let $\vec L$ be the angular momentum of the particle with respect the origin. Which of the following equations correctly relate $(s)\, \vec r,\,\vec p$ and $\vec L$ ?