A particle is projected from a horizontal plane ($x-z$ plane) such that its velocity vector at time t is given by $\vec V = a\hat i + (b - ct)\hat j$ Its range on the horizontal plane is given by
$\frac{{ba}}{c}$
$\frac{{2ba}}{c}$
$\frac{{3ba}}{c}$
None
Column $-I$ Angle of projection |
Column $-II$ |
$A.$ $\theta \, = \,{45^o}$ | $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$ |
$B.$ $\theta \, = \,{60^o}$ | $2.$ $\frac{{g{T^2}}}{R} = 8$ |
$C.$ $\theta \, = \,{30^o}$ | $3.$ $\frac{R}{H} = 4\sqrt 3 $ |
$D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$ | $4.$ $\frac{R}{H} = 4$ |
$K_i :$ initial kinetic energy
$K_h :$ kinetic energy at the highest point
A particle is projected vertically upwards from $O$ with velocity $v$ and a second particle is projected at the same instant from $P$ (at a height h above $O$) with velocity $v$ at an angle of projection $\theta$ . The time when the distance between them is minimum is
A ball of mass $m$ is thrown vertically upward. Another ball of mass $2\,m$ is thrown an angle $\theta$ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $\frac{1}{x}$. The value of $x$ is $.....$
A projectile is fired at an angle of $30^{\circ}$ to the horizontal such that the vertical component of its initial velocity is $80\,m / s$. Its time of flight is $T$. Its velocity at $t=\frac{T}{4}$ has a magnitude of nearly $........\frac{m}{s}$
A particle is projected from the ground at an angle of $\theta $ with the horizontal with an initial speed of $u$. Time after which velocity vector of the projectile is perpendicular to the initial velocity is