7.Gravitation
hard

A particle is projected vertically up with velocity $v=\sqrt{\frac{4 g R_e}{3}}$ from earth surface. The velocity of particle at height equal to half of the maximum height reached by it .........

A

$\sqrt{\frac{g R_e}{2}}$

B

$\sqrt{\frac{g R _{ e }}{3}}$

C

$\sqrt{g R_e}$

D

$\sqrt{\frac{2 g R_e}{3}}$

Solution

(b)

Conserving mechanical energy at the surface of earth and the maximum height attained,

$\frac{-G M m}{R_e}+\frac{1}{2} m \frac{4 G M}{3 R_e^2} R_e=\frac{-G M m}{r}+0$

$P_{. E_i}+K \cdot E_i=P_{.} E_f+K_i E_f$

$\Rightarrow \frac{-G M m}{R_e}+\frac{2 G M m}{3 R^e}=\frac{-G M m}{r}$

$-\frac{1}{3} \frac{G M m}{R_e}=\frac{-G M m}{r}$

$\Rightarrow r=3 R_e$

$\Rightarrow R_e+h=3 R_e$

$h=2 R_e$

Now, let us calculate the velocity of the particle at height equal to half of the maximum height $i . e$ at $h=R_e$ Again using mechanical conservation of energy,

$P . E_i+K . E_i=P . E_j+K . E_j$

$\frac{-G M m}{R_e}+\frac{1}{2} m \frac{4}{3} \frac{G M}{R_e^2} \times R_e=\frac{-G M m}{2 R}+\frac{1}{2} m v^2$

$\Rightarrow -\frac{1}{3} \frac{G M m}{R_e}+\frac{G M m}{2 R_e}=\frac{1}{2} m v^2$

$\Rightarrow \frac{G M m}{6 R_e}=\frac{1}{2} m v^2$

$\Rightarrow v=\sqrt{\frac{G M}{3 R_e}}=\sqrt{\frac{G M}{R_e^2} \times \frac{R_e}{3}}=\sqrt{\frac{g R_e}{3}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.