- Home
- Standard 11
- Physics
A particle moves in the $xy$ -plane with velocity $u_x = 8t -2$ and $u_y = 2$. If it passes through the point $(14, 4)$ at $t = 2\, s$, the equation of its path is
$x^2 = 2 -y$
$x = 2 -y^2$
$x = y^2 -y + 2$
$x = y^2 + y -2$
Solution
$\frac{\mathrm{dx}}{\mathrm{dt}}=8 \mathrm{t}-2$
$\mathrm{dx}=8 \mathrm{t} \mathrm{dt}-2 \mathrm{dt}$
$\Rightarrow \quad \int \mathrm{d} \mathrm{x}=8 \int \mathrm{tdt}-2 \int \mathrm{dt}$
$\Rightarrow \quad x=\frac{8 t^{2}}{2}-2 t+c$
$\Rightarrow \quad x=4 t^{2}-2 t+c$
at $t=2 \quad x=14$
$14=4 \times(2)^{2}-2(2)+c$
$14=16-4+c$
$\mathrm{c}=2 \therefore \mathrm{x}=4 \mathrm{t}^{2}-2 \mathrm{t}+2 \ldots \ldots(1)$
$\operatorname{again} \frac{\mathrm{dy}}{\mathrm{dt}}=2$
$\Rightarrow \int \mathrm{d} \mathrm{y}=2 \int \mathrm{dt}$
$\mathrm{y}=2 \mathrm{t}+\mathrm{c}^{1}$
at $t=2, y=4$
$\therefore 4=2 \times 2+c^{1}$
$\Rightarrow \mathrm{c}^{1}=0$
$\therefore \mathrm{y}=2 \mathrm{t} \Rightarrow \mathrm{t}=\frac{\mathrm{y}}{2}$
by equation $(1)$
$x=4\left(\frac{y}{2}\right)^{2}-2\left(\frac{y}{2}\right)+2$
$\Rightarrow x=y^{2}-y+2$