Gujarati
Hindi
3-2.Motion in Plane
hard

A particle moves in the $xy$ -plane with velocity $u_x = 8t -2$ and $u_y = 2$. If it passes through  the point $(14, 4)$ at $t = 2\, s$, the equation of its path is 

A

$x^2 = 2 -y$

B

$x = 2 -y^2$

C

$x = y^2 -y + 2$

D

$x = y^2 + y -2$

Solution

$\frac{\mathrm{dx}}{\mathrm{dt}}=8 \mathrm{t}-2$

$\mathrm{dx}=8 \mathrm{t} \mathrm{dt}-2 \mathrm{dt}$

$\Rightarrow \quad \int \mathrm{d} \mathrm{x}=8 \int \mathrm{tdt}-2 \int \mathrm{dt}$

$\Rightarrow \quad x=\frac{8 t^{2}}{2}-2 t+c$

$\Rightarrow \quad x=4 t^{2}-2 t+c$

at $t=2 \quad x=14$

$14=4 \times(2)^{2}-2(2)+c$

$14=16-4+c$

$\mathrm{c}=2 \therefore \mathrm{x}=4 \mathrm{t}^{2}-2 \mathrm{t}+2 \ldots \ldots(1)$

$\operatorname{again} \frac{\mathrm{dy}}{\mathrm{dt}}=2$

$\Rightarrow \int \mathrm{d} \mathrm{y}=2 \int \mathrm{dt}$

$\mathrm{y}=2 \mathrm{t}+\mathrm{c}^{1}$

at $t=2, y=4$ 

$\therefore 4=2 \times 2+c^{1}$

$\Rightarrow \mathrm{c}^{1}=0$

$\therefore \mathrm{y}=2 \mathrm{t} \Rightarrow \mathrm{t}=\frac{\mathrm{y}}{2}$

by equation $(1)$

$x=4\left(\frac{y}{2}\right)^{2}-2\left(\frac{y}{2}\right)+2$

$\Rightarrow x=y^{2}-y+2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.