A particle moves with constant angular velocity in circular path of certain radius and is acted upon by a certain centripetal force $F$. if the centripetal force $F$ is kept constant but the angular velocity is doubled, the new radius of the path (original radius $R$ ) will be
$2R$
$R/2$
$R/4$
$4R$
When an object is shot from the bottom of a long smooth inclined plane kept at an angle $60^{\circ}$ with horizontal. it can travel a distance $\mathrm{x}_{1}$ along the plane. But when the inclination is decreased to $30^{\circ}$ and the same object the shot with the same velocity, it can travel $x_{2}$ distance. Then $x_{1}: x_{2}$ will be
A tube of length $L$ is filled completely with an incompressible liquid of mass $M$ and closed at both the ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity $\omega $. The force exerted by the liquid at the other end is
In the given figure, $a = 15 \,m s^{- 2}$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius $R = 2.5\, m$ at a given instant of time. The speed of the particle is ........ $m/s$
An aeroplane is flying with a uniform speed of $100\, m/s$ along a circular path of radius $100 m$. the angular speed of the aeroplane will be ......... $rad/sec$
For a particle in a uniformly accelerated circular motion