A particle of mass $100\, gm$ and charge $2\, \mu C$ is released from a distance of $50\, cm$ from a fixed charge of $5\, \mu C$. Find the speed of the particle when its distance from the fixed charge becomes $3\, m$. Neglect any other force........$m/s$
$-1.73$
$2.73$
$-2.73$
$1.73$
A particle of mass $m$ and carrying charge $-q_1$ is moving around a charge $+q_2$ along a circular path of radius r. Find period of revolution of the charge $-q_1$
Consider the configuration of a system of four charges each of value $+q$ . The work done by external agent in changing the configuration of the system from figure $(1)$ to figure $(2)$ is
Two points $P$ and $Q$ are maintained at the potentials of $10\, V$ and $-4\,V$, respectively. The work done in moving $100$ electrons from $P$ and $Q$ is
A block of mass $m$ containing a net negative charge $-q$ is placed on a frictionless horizontal table and is connected to a wall through an unstretched spring of spring constant $k$ as shown. If horizontal electric field $E$ parallel to the spring is switched on, then the maximum compression of the spring is :-
${\rm{ }}1\,ne\,V{\rm{ }} = {\rm{ }}......\,J.$ (Fill in the gap)