Gujarati
7.Gravitation
normal

A particle of mass $m$ moves around the origin in a potential $\frac{1}{2} m \omega^{2} r^{2}$, where $r$ is the distance from the origin. Applying the Bohr's model in this case, the radius of the particle in its $n$th orbit in terms of $a=\sqrt{h /(2 \pi m \omega)}$ is

A

$a \sqrt{n}$

B

$a n$

C

$a n^{2}$

D

$a n \sqrt{n}$

(KVPY-2017)

Solution

$(a)$ Energy of particle is

$\frac{1}{2} m \omega^{2} r^{2}=\frac{1}{2} m v^{2}$

where, $v=$ velocity of particle around the path.

$\Rightarrow \quad v=r \omega$

Now, angular momentum of particle will be

$L=m v r=m r^{2} \omega$

By Bohr's model, we have

$L=\frac{n h}{2 \pi}$

$\Rightarrow \quad m r^{2} \omega=\frac{n h}{2 \pi} \Rightarrow r^{2}=\frac{n h}{2 \pi m \omega}$

or $r=\sqrt{\frac{h}{2 \pi m \omega}} \times \sqrt{n}$

$\Rightarrow \quad r=a \sqrt{n}$

$\left[\because\right.$ given, $\left.\sqrt{\frac{h}{2 \pi m \omega}}=a\right]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.