A particle of mass $m$ and charge $q$ is thrown in a region where uniform gravitational field and electric field are present. The path of particle
may be a straight line
may be a circle
may be a parabola
$A$ and $C$ both
An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to
An electron is moving towards $x$-axis. An electric field is along $y$-direction then path of electron is
An electron and a proton are in a uniform electric field, the ratio of their accelerations will be
The figures below depict two situations in which two infinitely long static line charges of constant positive line charge density $\lambda$ are kept parallel to each other. In their resulting electric field, point charges $q$ and $- q$ are kept in equilibrium between them. The point charges are confined to move in the $x$ direction only. If they are given a small displacement about their equilibrium positions, then the correct statement$(s)$ is(are)
A proton sits at coordinates $(x, y) = (0, 0)$, and an electron at $(d, h)$, where $d >> h$. At time $t = 0$, $a$ uniform electric field $E$ of unknown magnitude but pointing in the positive $y$ direction is turned on. Assuming that $d$ is large enough that the proton-electron interaction is negligible, the $y$ coordinates of the two particles will be equal (at equal time)