A positive charge particle of $100 \,mg$ is thrown in opposite direction to a uniform electric field of strength $1 \times 10^{5} \,NC ^{-1}$. If the charge on the particle is $40 \,\mu C$ and the initial velocity is $200 \,ms ^{-1}$, how much distance (in $m$) it will travel before coming to the rest momentarily
$1$
$5$
$10$
$0.5$
An electron is rotating around an infinite positive linear charge in a circle of radius $0.1 \,m$, if the linear charge density is $1 \,\mu C / m$, then the velocity of electron in $m / s$ will be ...... $\times 10^7$
A toy car with charge $q$ moves on a frictionless horizontal plane surface under the influence of a uniform electric field $\vec E .$ Due to the force $q\vec E$ , its velocity increases from $0$ to $6\,\, m s^{-1}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and tlie average speed of the toy car between $0$ to $3$ seconds are respectively
The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is
In Millikan's oil drop experiment, a charged drop falls with terminal velocity $V$. If an electric field $E$ is applied in vertically upward direction then it starts moving in upward direction with terminal velocity $2V$.If magnitude of electric field is decreased to $\frac{E}{2}$, then terminal velocity will become
The electric field inside a spherical shell of uniform surface charge density is