3-2.Motion in Plane
hard

A particle projected from ground moves at angle $45^{\circ}$ with horizontal one second after projection and speed is minimum two seconds after the projection. The angle of projection of particle is [Neglect the effect of air resistance]

A

$\tan ^{-1}(3)$

B

$\tan ^{-1}(2)$

C

$\tan ^{-1}(\sqrt{2})$

D

$\tan ^{-1}(4)$

Solution

(b)

$\theta=45^{\circ}, t=1 \,s$

$\tan \phi=\frac{V_y}{U_y}=\frac{u \sin \theta-g t}{u \cos \theta}$

$\tan 45^{\circ}=\frac{u \sin \theta-g \times 1}{u \cos \theta} \Rightarrow u \cos \theta=u \sin \theta-g$

also, $V_y=0$, after $1^{\text {st }}$ (as speed is minimum)

$u \sin \theta-g \times 2=0$

$\Rightarrow u \sin \theta=2 g \ldots (i)$

so, $u \cos \theta=2 g-g$

$u \cos \theta=g \ldots (ii)$

so, $\frac{(i)}{(ii)}=\frac{u \sin \theta}{u \cos \theta}=\frac{2 g}{g}$

$\Rightarrow \tan \theta=2$

$\theta=\tan ^{-1}(2)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.