Gujarati
Hindi
7.Gravitation
normal

A particle starts from rest at a distance $R$ from the centre and along the axis of a fixed ring of radius $R \&$ mass $M.$ Its velocity at the centre of the ring is :

A

$\sqrt {\frac{{\sqrt 2 GM}}{R}} $

B

$\sqrt {\frac{{2GM}}{R}} $

C

$\sqrt {\left( {1 - \frac{1}{{\sqrt 2 }}} \right)\frac{{GM}}{R}} $

D

$\sqrt {\left( {2 - \sqrt 2 } \right)\frac{{GM}}{R}} $

Solution

Applying conservation of energy

$v=\frac{-G \times M}{\sqrt{x^{2}+R^{2}}}$

Potential energy $=v \times m=\frac{-G m M}{\sqrt{x^{2}+R^{2}}}$

Initial kinetic energyr $_{i}=0$

Potential energy at center $=\frac{-G M m}{R}\{x=0\}$

$\frac{-G M m}{\sqrt{x^{2}+R^{2}}}+0=\frac{G M m}{R}+\frac{1}{2} m v^{2}$

$\frac{1}{2} m v^{2}=\frac{G M m}{R}-\frac{G M m}{\sqrt{x^{2}+R^{2}}}=G M m\left\{\frac{1}{R}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right\}$

$v^{2}=\frac{2 G M m}{m}\left\{\frac{1}{R}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right\}$

$v^{2}=\sqrt{\left(2-\frac{2}{\sqrt{2}}\right)\left(\frac{G M}{R}\right)}=\sqrt{(2 \sqrt{2}) \frac{G M}{R}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.