A particle with charge $q$, moving with a momentum $p$, enters a uniform magnetic field normally. The magnetic field has magnitude $B$ and is confined to a region of width $d$, where $d < \frac{p}{{Bq}}$, The particle is deflected by an angle $\theta $ in crossing the field

131-42

  • A

    $\sin \theta = \frac{{Bqd}}{p}$

  • B

    $\sin \,\theta \, = \frac{p}{{Bqd}}$

  • C

    $\sin \,\theta \, = \frac{{Bp}}{{qd}}$

  • D

    $\sin \,\theta \, = \frac{{pd}}{{Bq}}$

Similar Questions

A particle of mass $m$ and charge $q$ enters a region of magnetic field (as shown) with speed $v$. There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elas tically with a rigid wall. Time after which the velocity of particle becomes anti parallel to its initial velocity is

A particle of charge $q$ and mass $m$ moving with a velocity $v$ along the $x$-axis enters the region $x > 0$ with uniform magnetic field $B$ along the $\hat k$ direction. The particle will penetrate in this region in the $x$-direction upto a distance $d$ equal to

A charged particle is released from rest in a region of uniform electric and magnetic fields which are parallel to each other. The particle will move on a

  • [AIIMS 2011]

Mixed $H{e^ + }$ and ${O^{2 + }}$ ions (mass of $H{e^ + } = 4\,\,amu$ and that of ${O^{2 + }} = 16\,\,amu)$ beam passes a region of constant perpendicular magnetic field. If kinetic energy of all the ions is same then

A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. the time spent by the particle in the magnetic field is......$ns$