In case Hall effect for a strip having charge $Q$ and area of cross-section $A$, the Lorentz force is
Directly proportional to $Q$
Inversely proportional to $Q$
Inversely proportional to $A$
Directly proportional to $A$
A particle of charge $q$ and mass $m$ is moving with a velocity $-v \hat{ i }(v \neq 0)$ towards a large screen placed in the $Y - Z$ plane at a distance $d.$ If there is a magnetic field $\overrightarrow{ B }= B _{0} \hat{ k },$ the minimum value of $v$ for which the particle will not hit the screen is
In a mass spectrometer used for measuring the masses of ions, the ions are initially accelerated by an electric potential $V$ and then made to describe semicircular paths of radius $R$ using a magnetic field $B$. If $V$ and $B$ are kept constant, the ratio $\left( {\frac{{{\text{charge on the ion}}}}{{{\text{mass of the ion}}}}} \right)$ will be proportional to
The acceleration of an electron at a moment in a magentic field $\vec B\, = \,2\hat i + 3\hat j + 4\hat k$ is $\vec a\, = \,x\hat i - 2\hat j + \hat k$. The value of $x$ is
If two protons are moving with speed $v=4.5 \times 10^{5} \,m / s$ parallel to each other then the ratio of electrostatic and magnetic force between them
An electron is projected with velocity $v_0$ in a uniform electric field $E$ perpendicular to the field. Again it is projetced with velocity $v_0$ perpendicular to a uniform magnetic field $B/$ If $r_1$ is initial radius of curvature just after entering in the electric field and $r_2$ is initial radius of curvature just after entering in magnetic field then the ratio $r_1:r_2$ is equal to