A partition wall has two layers $A$ and $B$ in contact, each made of a different material. They have the same thickness but the thermal conductivity of layer $A$ is twice that of layer $B$. If the steady state temperature difference across the wall is $60K$, then the corresponding difference across the layer $A$ is ....... $K$
$10$
$20$
$30$
$40$
Two metal rods $1$ and $2$ of same lengths have same temperature difference between their ends. Their thermal conductivities are $K_1$ and $K_2$ and cross sectional areas $A_1$ and $A_2$ , respectively. If the rate of heat conduction in $1$ is four times that in $2$, then
A room is maintained at ${20^o}C$ by a heater of resistance $20$ ohm connected to $200$ volt mains. The temperature is uniform through out the room and heat is transmitted through a glass window of area $1{m^2}$ and thickness $0.2$ cm. What will be the temperature outside ....... $^oC$ ? Given that thermal conductivity $K=0.2$ for glass is and $J = 4.2 J/cal$
The rate of heat flow through the cross-section of the rod shown in figure is ($T_2 > T_1$ and thermal conductivity of the material of the rod is $K$)
What is the temperature (in $^oC$) of the steel-copper junction in the steady state of the system shown in Figure Length of the steel rod $=15.0\; cm ,$ length of the copper rod $=10.0\; cm ,$ temperature of the furnace $=300^{\circ} C ,$ temperature of the other end $=0^{\circ} C .$ The area of cross section of the steel rod is twice that of the copper rod. (Thermal conductivity of steel $=50.2 \;J s ^{-1} m ^{-1} K ^{-1} ;$ and of copper $\left.=385 \;J s ^{-1} m ^{-1} K ^{-1}\right)$
The ends $\mathrm{Q}$ and $\mathrm{R}$ of two thin wires, $\mathrm{PQ}$ and $RS$, are soldered (joined) togetker. Initially each of the wires has a length of $1 \mathrm{~m}$ at $10^{\circ} \mathrm{C}$. Now the end $\mathrm{P}$ is maintained at $10^{\circ} \mathrm{C}$, while the end $\mathrm{S}$ is heated and maintained at $400^{\circ} \mathrm{C}$. The system is thermally insulated from its surroundings. If the thermal conductivity of wire $\mathrm{PQ}$ is twice that of the wire $RS$ and the coefficient of linear thermal expansion of $P Q$ is $1.2 \times 10^{-5} \mathrm{~K}^{-1}$, the change in length of the wire $\mathrm{PQ}$ is