Gujarati
Hindi
8.Electromagnetic waves
medium

A plane electromagnetic wave travelling along the $X$-direction has a wavelength of $3\ mm$ . The variation in the electric field occurs in the $Y$-direction with an amplitude $66\  Vm^{-1}$. The equations for the electric and magnetic fields as a function of $x$ and $t$ are respectively :-

A

$E_y = 33\   cos\  \pi \times 10^{11} \left( {t - \frac{x}{c}} \right)$

$B_z = 1.1 \times 10^{-7}\  cos \pi \times 10^{11}\left( {t - \frac{x}{c}} \right)$

B

$E_y = 11\   cos\  2\pi \times 10^{11} \left( {t - \frac{x}{c}} \right)$

$B_z = 11 \times 10^{-7}\  cos 2\pi \times 10^{11}\left( {t - \frac{x}{c}} \right)$

C

$E_y = 33\   cos\  \pi \times 10^{11} \left( {t - \frac{x}{c}} \right)$

$B_z = 11 \times 10^{-7}\  cos \pi \times 10^{11}\left( {t - \frac{x}{c}} \right)$

D

$E_y = 66\   cos\  2\pi \times 10^{11} \left( {t - \frac{x}{c}} \right)$

$B_z = 2.2 \times 10^{-7}\  cos 2\pi \times 10^{11}\left( {t - \frac{x}{c}} \right)$

Solution

The equation of electric field occurring in $Y$ – direction

$E_{y}=66 \cos 2 \pi \times 10^{11}\left(t-\frac{x}{c}\right)$

Therefore, for the magnetic field in $Z$ – direction

$\mathrm{B}_{\mathrm{z}}=\frac{\mathrm{E}_{\mathrm{y}}}{\mathrm{c}}$

$=\left(\frac{66}{3 \times 10^{8}}\right) \cos 2 \pi \times 10^{11}\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{c}}\right)$

$=22 \times 10^{-8} \cos 2 \pi \times 10^{11}\left(t-\frac{x}{c}\right)$

$=2.2 \times 10^{-7} \cos 2 \pi \times 10^{11}\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{c}}\right)$    

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.