A linearly polarized electromagnetic wave in vacuum is $E=3.1 \cos \left[(1.8) z-\left(5.4 \times 10^{6}\right) {t}\right] \hat{\text { i }}\, {N} / {C}$ is incident normally on a perfectly reflecting wall at $z=a$. Choose the correct option
The wavelength is $5.4\, {m}$
The frequency of electromagnetic wave is $54 \times 10^{4}\, {Hz}$.
The transmitted wave will be $3.1 \cos \left[(1.8) z-\left(5.4 \times 10^{6}\right) {t}\right] \hat{i}\, {N} / {C}$
The reflected wave will be $3.1 \cos \left[(1.8) {z}+\left(5.4 \times 10^{6}\right) {t}\right] \hat{{i}}\, {N} / {C}$
A radiation is emitted by $1000\, W$ bulb and it generates an electric field and magnetic field at $P$, placed at a distance of $2\, m$. The efficiency of the bulb is $1.25 \%$. The value of peak electric field at $P$ is $x \times 10^{-1} \,V / m$. Value of $x$ is. (Rounded-off to the nearest integer)
[Take $\varepsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1} m ^{-2}, c =3 \times 10^{8}$ $ms ^{-1}$ ]
A point source of $e. m.$ radiation has an average power output of $800\,W$ . The maximum value of electric field at a distance $4.0\,m$ from the source is...$V/m$
Plane microwaves from a transmitter are directed normally towards a plane reflector. $A$ detector moves along the normal to the reflector. Between positions of $14$ successive maxima, the detector travels a distance $0.13\, m$. If the velocity of light is $3 \times 10^8 m/s$, find the frequency of the transmitter.
A light wave is incident normally on a glass slab of refractive index $1.5$. If $4\%$ of light gets reflected and the amplitude of the electric field of the incident light is $30\, V/m$, then the amplitude of the electric field for the wave propagating in the glass medium will be.......$ V/m$
All electromagnetic wave is transporting energy in the negative $z$ direction. At a certain point and certain time the direction of electric field of the wave is along positive y direction. What will be the direction of the magnetic field of the wave at that point and instant?